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Transition processes for junction vortex flow
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The details of the start-up transient vortex structure that forms near the junction of an
impulsively started plate and a stationary plate where a step jump in velocity occurs
at the plate surfaces are investigated. Numerical simulations have been conducted in
a geometry representative of recent experiments of this flow. The experiments did not
have access to data at very early times following the impulsive start, but they did
suggest that the flow undergoes transitions from a viscous-dominated phase to an
inertia-dominated phase. The numerical simulations presented here are designed to
explore the early viscous-dominated transients. The simulations show that when the
non-dimensional time, τ = tU 2/ν (t is the time that the plate has been in motion and
ν is the kinematic viscosity), is less than 100, the development process is dominated by
viscous forces. In this regime similarity scaling is used to collapse the data, which scale
as

√
t . The simulation results at low τ , when evaluated using entrainment diagrams,

show an unsteady transition process consisting of the following stages. Initially, the
flow consists of a non-rotating vorticity front with a single critical point for τ < 40.
For 40 <τ < 50, the flow has three critical points, two nodes and a saddle. A rotational
leading jet head develops for τ > 50 as the outermost node evolves into a spiral focus.
The simulations span the viscous range to the inertial range. In the inertial range, for
τ > 103, the flow structure scales as t5/6, as was observed in the experiments.

1. Introduction
The study of flows that admit similarity analysis to reduce the system order has

long fascinated researchers in fluid mechanics. It offers the potential to provide insight
into complex unsteady flows. A class of flows that is amenable to similarity analysis
is developing flows that are not constrained by an external or apparatus length
scale. One such case is the flow in the region close to the junction of an impulsively
started plate and a stationary plate where a step jump in velocity occurs at the plate
surfaces, first considered by Taylor (1960). Experiments show that the region close
to the junction is dominated by the evolution of a vortex roller if the wall speed is
sufficiently high (Allen & Naitoh 2007). If the length scales of an experimental or
computational domain are large compared to the size of the structure that forms,
there is the potential for a reduction in the order of the problem and a collapse of data
in self-similar coordinates. The physical mechanism responsible for the formation of
the vortex roller is that once the wall is set in motion, a vortex sheet forms over the
moving wall. This thin vortex layer is driven over the stationary wall by the moving
wall. A layer of vorticity of opposite sign and commensurate strength forms over the
stationary wall to enforce the no-slip boundary condition. Consequently, the layer
forming over the stationary wall resembles an unsteady wall jet started from rest.
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This dual-signed layer of vorticity then has the potential to separate and roll up into
a vortex.

This type of transient structure has been observed when a piston moves through a
cylinder (Guezet & Kageyama 1997), as well as in wall-driven cavity flows (Koseff &
Street 1984a ,b). An outstanding question in the literature is, under what conditions
does a vortex form? Hughes & Gerrard (1971) estimated that for a Reynolds number
of less than 450, where the length scale is based on piston diameter, no vortex
formation is observed. Conlon & Lichter (1995), in the study of the start-up of an
unsteady wall jet, estimated that no rotational head was observed for a Reynolds
number less than 50, based on the width of the wall jet. Both of these results imply
that the apparatus length scale is relevant for the formation of a rotational structure.
However, Tabaczynski, Hoult & Keck (1970), Allen & Chong (2000) and Allen &
Naitoh (2007) provide convincing evidence that the growth of the vortex, once formed,
can be considered independent of the apparatus length scale. This immediately brings
into question whether the notion of the formation of a vortex roller being dependent
on an external length scale was appropriate in the earlier studies. Perhaps a more
relevant question may be: How does the structure transition from a viscous one to
an inertially dominated one?

In the study of a viscous jet generated from rest, Cantwell (1986) was able to
show that the flow topology of an impulsively started jet is a function of the nature
and size of the impulse imparted to the flow. At early non-dimensional time (i.e.
low non-dimensional impulse) the starting flow resembles a moving, non-rotating,
vorticity front. As the impulse is increased, the front develops a rotational head that
is typically associated with a starting jet. Rotation in and of itself is not necessarily
an important distinction; rather, it represented one of a series of bifurcations in the
viscous flow topology. Analysis of our numerical results re-cast in similarity variables
reveals an analogous development of the flow topology in the neighbourhood of the
junction between the moving and stationary walls.

The goal of the current study is to utilize direct numerical simulations to
establish the criteria for when a vortex roller forms. The numerics can readily
span the parameter regime from viscous-dominated to inertia-dominated flow, thus
complementing the experiments of Allen & Naitoh (2007). Those experiments did not
have access to reliable data in the early viscous regime.

2. Governing equations and computational technique
An idealized version of this problem consists of a flow in a semi-infinite domain,

x ∈ (−∞, ∞), y ∈ [0, ∞), z ∈ (−∞, ∞), driven by an impulsively started section of the
lower boundary, y = 0 and x < 0, moving in the positive x-direction at constant speed
U , with the boundary y =0 and x > 0 remaining stationary. Of course, the physical
experiment is conducted in a finite domain. For early times, the experimental flow
remains essentially two-dimensional, i.e. invariant in the spanwise z-direction, except
near the spanwise walls of the apparatus. Numerically, we shall take the flow as being
z-independent, and solve the two-dimensional Navier–Stokes equations in a finite
domain of depth H and horizontal extent 2H . The moving part of the floor is y = 0
and x ∈ [−H, 0], the stationary part of the floor is y = 0 and x ∈ [0, H ], and the
junction is located at the origin, (x, y) = (0, 0).

The two-dimensional velocity is written in terms of a streamfunction,
u = (u, v) = (ψy, −ψx), where the subscripts denote partial differentiation. The only
non-trivial component of vorticity is the spanwise component ω = −ψxx − ψyy . In the
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streamfunction–vorticity formulation, the Navier–Stokes equations reduce to

ωt + ψyωx − ψxωy = ν(ωxx + ωyy). (2.1)

The initial conditions are that everything is at rest at t = 0: ψ(x, y, 0) =
ω(x, y, 0) = 0. The boundary conditions are no-slip. Specifically,

at the sidewalls: ψ(±H, y, t)= ψx(±H, y, t) = 0;
ω(±H, y, t) = −ψxx(±H, y, t);

on the top wall: ψ(x, H, t)= ψy(x, H, t) = 0,

ω(x, H, t) = −ψyy(x, H, t);

on the stationary part of the floor: ψ(x, 0, t)= ψy(x, 0, t) = 0,

ω(x, 0, t) = −ψyy(x, 0, t);

on the moving part of the floor: ψ(x, 0, t)= ψy(x, 0, t) = U,

ω(x, 0, t) = −ψyy(x, 0, t) + ψy(x, 0, t).

We non-dimensionalize (2.1) and the boundary conditions using H as the length
scale, U as the velocity scale and H/U as the time scale, and define a Reynolds
number

Re = UH/ν,

where ν is the fluid’s kinematic viscosity. The Reynolds number is the ratio of
the inertial time scale H/U and the viscous time scale ν/U 2. Second-order finite
differences are used to compute numerical solutions, using 1201 grid points in x/H

and 601 grid points in y/H and a time step δtU/H which depends on Re. Further
details on the numerical method and a discussion on the numerical treatment of jump
discontinuities in boundary conditions are available in Lopez & Shen (1998).

3. Results
Figure 1 shows vorticity contours in the full computational domain for Re = 104 over

a range of non-dimensional times Ut/H ∈ [1, 10]. Positive spanwise vorticity develops
over the moving wall and negative spanwise vorticity develops over the stationary
walls (including the top and end walls). Both these sheets of vorticity separate at
the junction on the floor and roll up into the vortex structure. Localized self-similar
behaviour of the vortex may be expected while the size of the developing vortex
structure remains small compared to the computational domain, e.g. for Ut/H < 4 in
the case shown in figure 1. The separated vortex structure in figure 1(f ), for example,
is of the same size as the computational domain, and hence by this point one would
expect that the presence of domain boundaries is having a significant effect on the
flow scaling.

In analysing the results and testing for self-similarity, we have found it convenient to
use the non-dimensional time τ = tU 2/ν = ReUt/H . If, in the absence of experimental
length scales, the flow field is universally defined by τ , then simulations at various Re

should collapse at identical τ values.
Allen & Naitoh (2007) showed that the velocity fields measured using particle

image velocimetry (PIV) and flow visualizations appear to be similar at equivalent
τ for values of τ > 103 (the smallest τ for which reliable data could be obtained)
when space is scaled with ν/U and velocity is scaled with U . Figure 2 shows
computed contour plots of the normalized velocity magnitude |u|/U , with space
scaled as (xU/ν, yU/ν), for a wide range of non-dimensional times, τ ∈ [300, 5×104],
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(a) tU/H = 1 (τ = 104) (b) tU/H = 2 (τ = 2 × 104)

(d) tU/H = 4 (τ = 4 × 104)

( f ) tU/H = 10 (τ = 105)

(c) tU/H = 3 (τ = 3 × 104)

(e) tU/H = 5 (τ =  5 × 104)
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H H
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x

Figure 1. Vorticity contours following an impulsive start of the half-floor at t = 0, at times as
indicated, for Re= 104. There are 50 positive contours (black) and 50 negative contours (grey)
over the range [−50, 50]; the vorticity range in the domain is [−1180, 1610] but the extreme
values are in the boundary layer on the floor.

corresponding to simulations with Re varying from 500 to 8 × 104 at various times
(note that tU/H = τ/Re). The data we have used to produce these plots correspond
to times when the vortex structure is at least an order of magnitude smaller than
the computational domain. It is clear that the scaled velocity fields at a given τ are
qualitatively similar over a large range of Re during the evolution while the size
of the roller is small compared to H . There are some small quantitative differences
primarily due to confinement effects. At a given τ , the size of the roller compared
to H is smaller for larger Re. The size and shape of the roller structure in terms
of (xU/ν, yU/ν) is primarily a function of the control parameter τ . For τ = 300, the
structure appears as a vorticity front. For τ = 4 × 103, it appears to have developed a
rotational core, while for τ = 5 × 104, the Stokes layer from the moving wall can be
seen clearly wrapping around the large rotational structure. In the following sections,
we examine the nature of the developing self-similar form.
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Figure 2. Contours of the normalized velocity magnitude |u|/U for (a) τ = 300, (b) τ =4×103

and (c) τ = 5 × 104, over a range of Re as indicated. There are 20 uniformly spaced contour
levels between 0 and 1; white corresponds to 0 and black to 1.
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Figure 3. (a) XD vortex diameter data and (b) YD vortex diameter data.

3.1. Inertial scaling

For τ > 103, a vortex roller can be clearly identified, and we characterize it, as was done
in Allen & Naitoh (2007), by its diameter in the x-direction, XD , and its vertical extent
above the floor, YD , as identified in figure 1(f ). The variation of XD and YD , scaled
by ν/U , during the flow evolution from τ ≈ 103 to τ ≈ 105, for several cases with Re
ranging from 5 × 103 to 8 × 104, are shown in figure 3. All the data collapse quite
well onto a single curve which varies as t5/6. This is the same inertial scaling that was
observed experimentally for the self-similar development of the vortex roller in Allen &
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Figure 4. Contours of the normalized velocity magnitude |u|/U for Re = 1500 at viscous
times τ as indicated.

Naitoh (2007). Self-similarity breaks down when the size of the structure approaches
the domain size in both experiments and computations. In the experiments, the
vortex roller can become unstable to three-dimensional spanwise instabilities at early
τ before the roller dimensions are comparable to the domain size. This is due to
various effects including interactions between the roller and the spanwise endwalls
of the flow apparatus as well as inherent three-dimensional instabilities of the roller
which are analogous to the three-dimensional instabilities of the rollers in the wakes
of bluff bodies. As a result, the two-dimensional simulations of the junction vortex
flow have an extended self-similar range in τ compared to the experiments.

Simulation data allow us to probe the early τ development of the vortex roller.
Figure 4 shows a sequence of the normalized velocity magnitude |u|/U for τ ∈
[375, 1125]. Over this range of τ there is a significant change in the form of the
velocity field. For τ < 103 the velocity magnitude contours have the form of a front
without a clear local minimum. The development of an inflection point behind the
leading vortex front can be seen in figure 4(b), and in figure 4(c) the appearance of
what appears to be a vortex core (located at about xU/ν = 40 and yU/ν =130 in
figure 4c). The appearance of the core is important as it provides a point which can
be tracked and used as a length scale to describe the developing structure.

The t5/6 scaling obtained from the XD and YD data suggests that inertial forces
are dominant in the evolution of the vortex roller for τ > 103. For τ < 103, however,
neither the simulations nor the experimental data provide a marker point that can
be identified as a vortex core. At very early times following the impulsive start of the
floor motion the flow must be dominated by viscous forces before transitioning to the
inertially dominated flow regime. In the following sections, we analyse the numerical
data for τ < 103 to explore the viscous-dominated early evolution of the flow.

3.2. Viscous scaling

During the initial formation of the roller structure, one expects viscous forces to dom-
inate and for the spatial scales to develop proportional to

√
νt . Figure 5 shows contour

plots of the velocity magnitude, |u|/U , scaled spatially as ξ = x/
√

νt, η = y/
√

νt for
non-dimensional times of τ =1.5, 17.5 and 125. For over two orders of magnitude in
τ , it appears that the roller structure is developing on a viscous scale, as the plots of
velocity magnitude appear almost identical.

In the study of viscous starting jets in the absence of apparatus length scales,
Cantwell (1986) showed that the Stokes equations admit similarity transforms of the
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Figure 5. Contours of the normalized velocity magnitude |u|/U plotted in the viscous-scaled
coordinates ξ and η, for (a) τ = 1.5, (b) τ = 17.5 and (c) τ = 125. Contour levels in all frames
are the same, with 10 contour levels in the range |u|/U ∈ [0, 1].

form

ξ =
x√
νt

, η =
y√
νt

, W =
4ν(n − 1)u

Mtn−2
, V =

4ν(n − 1)v

Mtn−2
. (3.1)

The index n is related to the nature of the forcing of the viscous starting jet.
The derivation relied on the requirement that this impulse remain invariant under
transformation. The constant M is related to the impulse delivered to the flow.

In our junction vortex flow problem, there is no obvious invariant that is to be
rendered constant. However, the scaled numerical results presented in figure 5 suggest
that the appropriate velocity scaling is |u|/U and that the spatial scaling is x/

√
νt .

Although the action of the moving wall is to apply a distributed force along its length
and Cantwell’s force was a point force applied at the origin of an unbounded domain,
the above scalings suggest an analogy between Cantwell’s solutions and our problem
in the immediate neighbourhood of the junction between the moving and stationary
bottom. The evolving flow topology to be described in § 3.3 also follows a similar
evolution to that described in Cantwell (1986) and hence the action of the velocity
discontinuity in the immediate junction region may be considered akin to the step
function forcing of Cantwell (1986).

3.3. Viscous entrainment diagrams

A problem with the interpretation of unsteady streamline patterns and velocity
magnitude plots is that critical features are a function of the velocity of the observer.
As explained in Cantwell (1986), a technique that removes this ambiguity with
unsteady flow fields is the use of entrainment diagrams which show particle paths.
For an unsteady flow field, particle paths would typically cross, however, by using
similarity transforms the potential exists to develop universal entrainment diagrams
for unsteady flows. The equations for particle paths are

xt = u, yt = v. (3.2)

Using the viscous similarity scalings for space and velocity given in (3.1), these particle
path equations are transformed into

ξα =
√

τW − 0.5ξ = F, ηα =
√

τV − 0.5η = G, (3.3)

where α = ln(t). The origin of the (ξ, η) coordinate system is the junction of the moving
wall with the stationary one. From our computational data and equation (3.3), the
local values of ξα and ηα are calculated. The technique of isolines can then be used to
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produce an entrainment diagram in the similarity coordinates (ξ, η). The scaled time
τ plays the role of a control parameter in this system.

This numerical empirical approach to the evolving topology of the entrainment
diagram shows the viscous flow is dominated by critical points that are created
and change their characteristics as τ increases. Critical points in the self-similar
entrainment diagram are points where the slope of dξ/dη is indeterminate. These
points are found by solving F = 0 and G =0 simultaneously. Near the critical point
the flow field is governed by[

ξα

ηα

]
=

[
Fξ Fη

Gξ Gη

] [
ξ − ξ	

η − η	

]
, (3.4)

where (ξ	, η	) is the critical point and the Jacobian matrix is evaluated at the critical
point. The nature of the critical points is then defined by the trace and determinant
of the Jacobian matrix, as outlined in Perry & Chong (1987).

Figure 6 shows the viscous entrainment diagrams for a range of τ , from 0.5 to 100.
For very small τ , there is a single stable node point very near the junction on the
floor. As τ increases, this node migrates in the positive x direction and the trajectories
approaching it rapidly converge on to a sharp front before slowly approaching the
node (figure 6a–d). As τ increases beyond τ = 40, a saddle-node point develops on
this front, which bifurcates to form a saddle point and a stable node point on the
front (figure 6e). The flow in toward the front is fast and the subsequent flow along
the front is slow. The fast/slow nature of the flow in the neighbourhood of the
front is characterized by the magnitude of the eigenvalues of the Jacobian matrix in
(3.4) evaluated at the saddle point. For example, at τ = 45 (figure 6e), the negative
eigenvalue of the saddle point is −1.04 (the corresponding eigenvector is (1.0, −0.61),
approximately normal to the front), whereas the positive eigenvalue is an order of
magnitude smaller, 0.11 (the corresponding eigenvector is (1.0, 1.3), approximately
tangential to the front). With further increases in τ , the saddle point migrates along
the front towards the node near the wall, and the other node which now terminates
the front, evolves into a stable spiral node, signalling the roll-up of the vorticity front
and the formation of a vortex core (figure 6f ). The final topology of critical points
produces a pattern that is the same as that proposed by Allen & Naitoh (2007) for
high τ flow based on experimental observations.

In this paper we have used the definition of the appearance of a spiral node in the
entrainment diagram, which occurs at τ � 50, as the criterion for vortex formation.
Physically, this is the time at which a dye visualization streakline would begin to
rotate around itself. The reason for the large difference between the times for the
appearance of a spiral node and the appearance of a local minimum in the velocity
field is that the flow field is unsteady and hence streaklines and streamlines are not
coincidental.

3.4. Limits of the corner flow behaviour

The near-field behaviour of the flow field is described by Taylor’s creeping corner flow
solution. In polar coordinates, Taylor (1960) suggested ψ(r, θ) = rf (θ) is a solution
to the streamfunction in the immediate vicinity of the moving wall/stationary wall
junction and that the flow in this region is dominated by viscous forces. Substitution
into the bi-harmonic equation ∇4ψ =0, or equivalently ∇2ω = 0, yields

d4f

dθ4
+ 2

d2f

dθ2
+ f (θ) = 0. (3.5)
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Figure 6. Self-similar entrainment diagrams for τ as indicated.

The solution for the streamfunction with appropriate boundary conditions is
ψ/ν = rUθ sin(θ)/ν and a plot of the solution for the streamfunction ψ(x, y)/ν is
shown in figure 7(a). The most striking aspect of this plot is the divergence of the
streamlines away from the stationary surface. This solution gives no indication of the
formation of a vortex roller. As a comparison, figure 7(b) shows stream traces from
the simulations at Re = 100, τ = 0.35 for rU/ν < 0.1. The plot shows similar features
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Figure 7. (a) Taylor’s self-similar viscous solution and (b) comparison with computational
data at small rU/ν < 0.1 at τ = 0.35.

to Taylor’s solution indicating Taylor’s solution dominates over any unsteady inertial
effects in the region where viscous forces are large. As Taylor’s solution is self-similar,
an estimate of its range of validity comes from consideration of the relative size of
the inertial terms described by this solution, when compared to the viscous ones.
Taylor arrived at a practical criterion for the range of the viscous solution as being
rU/ν � 1, where r represents the distance from the corner singularity.

4. Conclusion
Numerical simulations have been used to show that, in a geometry consisting of a

moving wall sliding under a stationary one, a vortex roller is produced which exhibits
self-similar growth if the roller is small compared to the computational domain.
An appropriate non-dimensional time scale with which to describe the early vortex
development is τ = tU 2/ν. Data from simulations for a wide range of Reynolds
numbers, based on the characteristic size of the computational domain and velocity
of the moving wall, were collapsed when scaled with respect to τ . Simulations for
τ > 103, in the inertial regime of vortex development, are in good agreement with the
experimentally observed t5/6 scaling of Allen & Naitoh (2007).

A principal result of this paper has been to classify the transition of the flow from
viscous to one where the flow is dominated by inertial forces, and to identify when
the vortex forms. Simulation data show that, for τ < 100, the flow field scales in a
self-similar fashion with a viscous time scale,

√
t . The simulations show that the flow

field topology undergoes a transition from a non-rotating vorticity front to a rotating
vortex at τ � 50. This result was determined with the use of entrainment diagrams in
self-similar coordinates, which were used to show that the initial flow field resembles a
vorticity front with a single node on the x-axis with the trajectories leading in toward
it first focusing in on a slow manifold which we identify as the front. Along this slow
manifold at about τ = 40, a saddle-node point develops that subsequently splits into
a saddle point and a stable focus. The unstable manifolds of the saddle are the slow
directions and these flow into the two stable nodes, the original one on the x-axis and
the newly formed one in the flow interior. This interior node transforms into a spiral
focus at τ � 50. It is the appearance of the spiral focus that constitutes the formation
of a rotational vortex at the head of the vorticity front. This early evolution develops
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on the viscous time scale
√

t . This is then followed by a transitional regime, and
by τ ∼ 103 the flow develops on an inertial time scale t5/6. Throughout this whole
evolution, the flow field in a neighbourhood of the junction between the stationary
and moving wall is well described by Taylor’s self-similar viscous solution.

It would be of interest to investigate other flows that are driven by jump
discontinuities in the velocity boundary conditions to see if analogous self-similar
scalings describe their local behaviour.
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